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 Abstract 
 

Recently, a paper published by Celeux et al. (2006) presented several forms for the 

deviation information criterion (DIC) for mixture models, each version is depended 

on the kind of probability function. However, no reliable version was adopted for 

those models. As an idea inspired by Brooks (2002, p. 617), we develop, in this 

paper, Bayesian deviations plugging into two known criteria: the Akaike information 

criterion (AIC) and Bayesian information criterion (BIC) for choosing best mix 

model.  Due to unavailability the closed-form of the perceived likelihood of those 

models, we propose an algorithm for estimating the observed likelihood for mixture 

models via an Markov chain Monte Carlo (MCMC) approach.   It is shown via 

recreation researches and examples include actual information applications that 

proposed AIC and BIC perform well. 
 

                                                                            

             

Introduction  

     Mixture models are type of latent variable models that have been developed to be important tool to 

accommodate the unobserved heterogeneity in data.  A finite mixture model (FMM) is mostly 

employed in case a reflection is attributed to one of K groups (constituents), which has distinctive 

attributes and may be defined by diverse likelihood dispersals. In other words, these models are a 

weighted average of a finite number of distributions (mingling constituents). FMMs could be a finite 

combination of dispersals like Gaussian or Poisson dispersals (McLachlan & Peel, 2000; Fruhwirth-

Schnatter, 2006). An important issue of the literature about the mix models is to identify the number of 

mixture constituents, which considers a specific part related with the process of the model estimation.  

Several applications of latent class models, the number of situation (components) of observed data is 

usually determined a significant, either by nature of problem or based on the technical perception 

(Scott, 2002; Celeux et al., 2006). However, determining of components on the basis of the perceived 

information denotes which increasing number of situations, and also the parameters, often improves fit 

of the model. 

     On other side, several applications could suppose that the number of implied situations is unknown 

and consider that number like arbitrary factor to be assessed together with the other model criterion.  

For instance, the fluctuating jump MCMC method was outlined by Richardson & Green (1997) to 

assess the constituents number independent combinations.  However, this method is frequently 

computationally rigorous.  Moreover, it needs attention while planning moves to confirm that Markov 
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chains blend thoroughly both inside model gaps (similar situations, diverse factors) and amid model 

gaps (dissimilar situations). Moreover, it could face several approximating complexities. Additionally, 

that method has challenges on the prior selection for the number of latent states K (Fan & Sisson, 

2011). 

     Two most common criteria, which are assumed to create stable model fit and parsimony, that are 

the Akaike Information Criterion (AIC; Akaike (1973)) and the Bayesian Information Criterion (BIC; 

Schwarz (1978)).  Under frequentist context, the AIC and BIC are employed by Zucchini & 

MacDonald (2009) in many applications to choose the best FMM. However,  these two criteria can 

lead to under-fitting or over- fitting problems due to irregular behavior the behavior of the likelihood 

function (Zucchini & MacDonald, 2009). Moreover, computing the over standards does not regard the 

ambiguity related to these measures when assessing models but are based only on point estimates of 

parameters. From this, the advantage of Bayesian inference comes to regard for different sources of 

ambiguity. Based on the principle, Brooks (2002, p.  617) referred to, through his remarks on the paper 

printed by Spiegel- halter et al. (2002), improving standards like AIC and BIC in a Bayesian 

framework. He illustrated the possibility of use the likelihood or deviation evaluated at an MCMC run  

and  plug  it  into  the  AIC  and  BIC.  This  proposal  was  also  proposed  for  different models by 

Ntzoufras (2009, pp.426-428), Carlin & Louis (2009, p.211) Congdon (2014, p.36) and Kadhem, 

Hewson & Kaimi (2018). 

     On this basis, the paper's goal is to produce original versions of AIC and BIC for FMMs that are 

evaluated in the Bayesian principle. Simply, the new forms of AIC and BIC are computed stand on the 

perceived-data probability estimated via subsequent draws.  We implement a Monte Carlo simulation 

study to investigate all above proposed criteria.  In this paper, it is not intended to make strong 

preceding expectations regarding the number of situations, but we deduce the model according to a 

definite number of components K.  Consequently, that article considers the subject of model choice in 

the FMM perspective by supposing series of values of K between 1 and a pre-specified extreme value 

Kmax, given an observed example of data. Consequently, we determine an appropriate number of 

components for a FMM, suitable for some models with maximizing number of components then 

choose the best model based on assumed model selection standards. 

     The paper is divided in the following manner: Section 2 introduces literature review for the 

estimation and selection of finite mixture models.  Section 3 presents structure of the model.  The 

model selection method is given in Section 4.  Section 5 presents the simulation outcomes and two 

actual information application data example is introduced in.  Section 6 introduces several deductions. 

1. Bayesian Analysis of FMMs 

Let                refer to an example of perceived data of size  , the probability density 

function(pdf) of a combination model could be well-defined as a mixture of K constituent pdf: 

    |   ∑      |                     

 

   

 

     where     |    refers to the pdf of  th constituent,    is the population k weight that       , 

and ∑       |                      
 
                     refers to a group of 
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unidentified weight and indexes of combination model. The key notion of combination model is that 

the remarks y are created by k distinctive arbitrary procedures so every procedure is shown by the 

density     |    and    rep- resents the equivalent ratio of remarks of this procedure.  For instance, 

take FMM where     |   is instituted from densities that are all Normal or Poisson distribution. Given 

an identically independent data (iid),                 produced from a k- constituent combination 

model shown in Equation (2-1), the probability function of those remarks, supposing that    is 

independently disseminated may be shown as  

    |           ∏{  

 

   

     |           |             |    

 ∏∑  

 

   

 

   

     |                                 

 

     In the FMM in Equation (2-2), the unidentified parameter direction       ) requires  assessed. 

To gain the subsequent distribution of  , it is required to integrate the data-dependent probability 

function        of the combination model and the preceding dispersal of the unidentified indexes 

;       . The subsequent distribution may be shown as: 

    |    (                             (2-3) 

     where L(       ∏ ∑        |   
 
   

 
    is the probability,                 represent the 

preceding dissemination of θ and   respectively. An effective way for simplifying the sampling from 

the subsequent dissemination is the date increase method suggested by Tanner & Wong (1987).  This 

method depended on sampling from the whole data of subsequent dissemination       |   rather than 

    |    by  suggesting  secondary  variables,  named  z,  also  called  underlying  indicator variables. 

If y and z are known, the analysis will be clearer. 

     It is proposed that there are distinct underlying indexes, zt ;t = 1,2,...,T , related to every  remark  of  

the  vector                .   Since  these  indexes  in  actual  life are unidentified parameters, the 

implication of a combination model needs approximating two unidentified measures: the constituent 

indicators, z, and the constituent parameters, Θ = (π, θ).  In the Bayesian standpoint, to acquire these 

quantities, they could be sampled from the next whole date posterior: 

 

        |                                      

 

     where   (z,       is the whole data probability of a finite mix model,       and       are 

independent previous dissemination of the parameter   and of the constituents weights   

correspondingly. The whole-data probability is shown as: 
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=∏   

∑         
    

   ∏    
        |      (2 - 5) 

 

     In order to complete the Bayesian requirement of the model, it is required to identify priors for 

the unidentified model indexes:  π and θ.  The prior on the constituent weights is denoted by a 

Dirichlet distribution as 

 

      ∏    

 

   

∏  
                                         

 

   

 

 

     where                    are    positive  (       )  hyper-parameters  of  the  Dirichlet 

distribution.  The prior on the component-specific parameter,  , depended on the shape of the 

parametric dissemination presumed for remarks,  .  Generally speaking, to denote the prior on the 

component-specific parameter,  , it should be written in the following form;  

      |  ,                 (2 - 7) 

     where   denotes a group of the hyper-parameters controlling the form of the prior 

dissemination of  .  Common MCMC methods are used.  Gibbs sampler are used (Geman & 

Geman, 1984) to pretend from the full provisional succeeding disseminations of the FMM. The 

following dissemination in Equation (3) includes three full conditional distributions that are 

written as 

 

                                         z     |      ,              

π      |                                 (2 - 8) 

                                           θ     |      

 

     It  is  not that so difficult to achieve  the  Gibbs  sampler  to  sample  from  these 

disseminations.   In Bayesian inference for FMMs,  the mingling ratio {               could be 

seen as the preceding dissemination, which one remark relates to sub-population  .  If the 

observations are,    , the complete provisional succeeding distribution of    could be gained as 
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       |                 |    
       |   

∑        |   
 
   

                            

From Equation (2-9), the marginal distribution of the    is a multinomial distribution 

               {                                       

If the constituent indicators is  , the complete provisional succeeding of the constituent weights, 

 , can be sampled as  

    |                    

    |   ∏  

∑          
   

 

   

∏     |   

    

∏  
    

 

   

 ∏    
            

 

   

 

                                                

where    ∑    
 
   , k = 1,2,...,K, refer to the sharing sizes. if   and  , the succeeding of   is  

              |                            ∏      |                     (2 -12) 

We follow the same algorithm introduced by Marin & Robert (2014, p.183) which defines the 

phases of sampling from the complete provisional subsequent distributions of a mix model.  

 

2.  New Bayesian Versions of AIC and BIC 

In  this  section,  we  develop  Bayesian  amended  forms  for  the  Akaike  Information 

Criterion (AIC) (Akaike, 1973) and Bayesian Information Criterion (BIC) (Schwarz, 

1978)  for  mixture  models.   Here, the  criteria  used are  basically  depended  on  a  notion 

presented by Brooks (2002). Given an perceived probability function attained by           

assimilating the latent variables of a FMM, we calculate Bayesian forms for AIC and BIC which 

are estimated over the succeeding draws.  To do that, the first is to define the deviation.  If a model 

with parameters           and a sequence of perceived data,               , increased with 

a sequence of missing data,               , 

the combined or comprehensive data distribution is shown as: 

                |                   

where   (y,z| ) refers to the complete data of probability. The perceived or combined probability 

function of observations,   (y| ) = L( ;y), is got by summing every probable situation sequences 

in the complete data probability. Thus 
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    |   ∑      |   ∑       |     

  

 

  

 ∏   
 (  |   
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 ∏∏       |  

 

      
     

 

   

                                         

and the observed log-likelihood function    |   can be given by:  

   |      {∏ ∏       |   

 

      

 

   

}  ∑∑   [       |   ]

 

   

 

   

                 

So, the deviation then could be well-defined as:  

 

D(     [   |  ]     ∑ ∑    [      |   ]
 
   

 
                    

We indicate the suggested standards as AI   and BI   which are resulted from 

AI                [            ]       

            [              ]                    

and 

BI                [            ]            

             [              ]                        

This formula,              is a minimum Bayesian deviation, assessed by the subsequent samples 

of the model parameters simulated from an MCMC run.                 is the complete log-

likelihood function, and   is the number of free parameters, that is,          (Celeuxe et al., 

2006). Given an observed log-likelihood in closed form into the AIC and BIC can be 

approximated as follows:  

AI     | [           |  ]+2h 

= -2   | [       |    ]     

= -2 ∫ ∫ [       |    ]
 

 
       |          

 

 
         (3-7) 

and  

BI     | [           |  ]+h     , 

= -2  | [       |    ]          

= -2 ∫ ∫ [       |    ]      
 

 
 |                  

 

 
   (3-8) 
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where 

  | [           |  ]= -2   | [       |    ] 

The two above standards, the anticipated perceived deviation assessed at draws from the 

subsequent dissemination of all model parameters,   ( ,θ|y,z), perceived over an MCMC run. 

 

3. Simulation study 

We design, in this section,  a simulation study to investigate the suggested standards; AIC and BIC 

under the Bayesian principle, for limited mix of regular distributions. This experiment, we try to 

select the best normal mixture model among several competing mixture models using proposed 

criteria.  Before doing that, we first generate several data set from models with different 

complexities. Then, we implement the model estimation. Finally, we select the best model fitted to 

the generating data. 

3.1  Generating synthetic data sets 

We generated three data sets with size n=600 for each from normal mixture models with   =2,3 

and 4 respectively, where    denotes the model order: 

First model       

       |            |     . 

Second model      :  

0.3N(  |2,1)+0.5N(  |8,1)+0.2N(  |12,1). 

Third model     : 

0.25N(  |2,1)+0.25N(  |8,1)+0.25N(  |12,1)+0.25N(  |20,1). 

Figures (1), (2) and (3) show the histograms of the data sets simulated from the three models. 
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Figure 1: Histogram of the data generated from the first model (2- components). 

 

 

 

Figure 2: Histogram of the data generated from the second model (3- components). 
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Figure 3: Histogram of the data generated from the third model (4- components). 

 

3.2  Estimation and fitting the model 

Throughout section, we estimate the model parameters employing the Gibbs sampler ( Geman & 

Geman, 1984) of every model of the three models that generated the data sets. The parameters of 

the model are sampled as following:  

 

 

 

      
          (     )  

  |  
        (     

 |  )  

                , 

where              and    are known hyper-parameters,              . We utilize non-informative 

priors on the model indexes for the data plays the leading part in deducing the subsequent 

dissemination (Gelman et al., 2014). Therefore, Dirichlet distribution is used for π with    

       {         (Fruhwirth-Schnatter,2006).For difference parameter,    , we use the inverse 

Gamma with parameters a= 0.001 and b = 0.001 and so a mean of a/b = 1 and a variance of 
 

  ⁄        could result diffuse values of this form. The prior of the mean parameter,µ , could 

be meant flat values from a Normal distribution with a shape parameter, η = 0, and a scale 

parameter, ζ = 0.001 that has great difference about 1000. We run the Gibbs sampler for 105,000 

iterations, leaving the first 5,000 as a burn-in period and thinning the rest 100,000 iterations by 

keeping every 10th iteration. To avoid switching label problem, we put artificial restraints on the 

means parameter of the model, thus             

4.  Results 

4.1    Results of the model estimation 
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     We show the outcomes of the valuation and choice of the all models fitted to the simulated 

datasets. Tables (1-3) show estimation result of each model respectively. Figures (4), (5), and (6) 

show the MCMC result of each model respectively. Note that the sampler accomplishes well in 

approximating the real parameters of three models. 

 

Parameter       

True 0.3 0.7 

Estimated 

95%CI 

0.281 

(0.196, 0.492) 

0.719 

(0.693, 0.791) 

Parameter       

True 2 10 

Estimated 

95%CI 

2.049 

(1.896, 3.292) 

9.956 

(9.593, 10.701) 

Parameter   
    

  

True 1 1 

Estimated 

95%CI 

1.096 

(0.996, 1.292) 

1.026 

(0.993, 1.188) 

 

 

Table 1: Estimated parameters of a Normal mixture model with     . 

Parameter          

True 0.3 0.5 0.2 

Estimated 

95%CI 

0.312 

(0.296, 0.392) 

0.489 

(0.493, 0.5081) 

0.213 

(0.174,0.244) 

Parameter          

True 2 8 12 

Estimated 

95%CI 

2.074 

(1.993, 2.292) 

7.891  

(7.644, 8.301) 

12.022 

(11.774,12.144) 

Parameter   
    

    
  

True 1 1 1 

Estimated 0.986 1.071 1.047 
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95%CI (0.987, 1.116) (0.903, 1.236) (0.974,1.144) 

 

Table 2: Estimated parameters of a Normal mixture model with     . 

Parameter             

True 0.25 0.25 0.25 0.25 

Estimated 

95%CI 

0.262 

(0.183, 

0.243) 

0.277 

(0.190, 0.297) 

0.248 

(0.188,0.276) 

0.228 

(0.174,0.284) 

Parameter             

True 2 8 12 20 

Estimated 

95%CI 

2.095 

(1.788, 

2.731) 

8.342 

(7.312,8.664) 

12.19 

(11.444,12.219) 

20.076 

(19.201,12.326) 

Parameter   
    

    
    

  

True 1 1 1 1 

Estimated 

95%CI 

1.337 

(0.895,1.047) 

1.041 

(0.899,1.333) 

1.133 

(0.989,1.107) 

1.075 

(0.952,1.111) 

 

 

 

Table 3: Estimated parameters of a Normal mixture model with     . 

4.2   Result of the model selection 

     Having satisfactory estimates, by fitting three normal mixture models correctly, we now check 

the process of model selection. Given K=1, 2, ..., 7 of competitive models fitted for each one of 

the three synthetic datasets, the percentage of times out of 100 replications is reported that our 

criteria select the correct generating model in Table (5). In the example of producing data model 

with K0 =2 situations, it is clear that both AICB  and AICB  perform well in choosing the 

appropriate model (97%) with very slight overestimate the number of true components (3%). 

     In the second case, with increasing the complexity of generating model (K0=3), it can see that 

the AICB and AICB have a very satisfactory selection percentage for the correct model (92% and 

93% respectively). In the third case, the generating model with K0=4, the  AICB  and  AICB  

present  successful  in  determining  the  four  components  in  100 simulations (90% and 91% 

respectively). 

5.  Application 
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    In this section, we adopt two real application databases involving the acidity data and galaxy 

data, which were analyzed by Richardson & Green (1997), to evaluate our pro- posed criteria 

(figures 4 and 5).  

K K0=2 K0 = 3 K0 = 4 

AICB BICB AICB BICB AICB BICB 

K=1 0% 0% 0% 0% 0% 0% 

K=2 97% 97% 2% 4% 0% 0% 

K=3 3% 3% 92% 93% 3% 3% 

K=4 0% 0% 6% 3% 91% 90% 

K=5 0% 0% 0% 0% 0% 0% 

K=6 0% 0% 0% 0% 0% 0% 

K=7 0% 0% 0% 0% 0% 0% 

      

Table 4: the number of times percentage in which the generating models with K0=2, K0=3 and 

K0=4 are chosen by each criterion over 100 replications. 

     The Acidity data focus on the acidity index for a sample of 155 lakes in north- central 

Wisconsin.  This parameter defines the lake's ability to absorb acid; decreased values may result in 

losing biological resources.  It is supposed that ooze lakes that have no inlets or outlets,  be apt to 

have minimum acidity parameter,  and discharged lakes that have inlets and outlets have greater 

values.  This information has been analyzed as a combination of regular disseminations on the log-

scale by several authors, for example: Crawford et al. (1992) as well as Richardson & Green 

(1997). 

 

     According to several studies, the best model fitted for these data was its rank ranged between 

two and three components. For example, Richardson & Green (1997) used the reversible jump 

Markov chain Monte Carlo (RJMCMC) method and concluded that a normal mix model with two-

components is the best for these data. Ishwaran, James & Sun (2001) suggested that two-

components mixture model for the same data using the AIC and BIC. Also, Chen & Kalbfleisch 

(1996) pointed out that a normal mixture with K=2 is an appropriate model for the acidity data. On 

the other hand, McGrory & Titterington (2007) suggested a normal mixture with K=3 for these 

data. 

     The Galaxy data includes 82 speeds of remote galaxies differing from our own, sampled from 6 

well-separated conic sections of the corona borealis.  This data have been used by Crawford et al. 

(1992), Richardson & Green (1997), Celeux et al. (2006) and Papastamoulis & Iliopoulos (2010) 

for mixture modeling.  The best fitting model appropriate for these data was a model with three 

mixture components as shown by Celeux et al. (2006).  
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     By the same way implemented with simulated data, we fitted normal mixture models with 

different complexities ranged from K=2 until K=7 for the Galaxy and acidity data as shown in 

figures (4) and (5) respectively.  The results of model selection are shown in Table (5) which show 

that the AICB and BICB select the model with K=2 along with the results obtained by most above 

authors.  Note that fitting for the galaxy data after K=3 no longer important.  This can be noted for 

the values of log-likelihood which were decreasing slightly. The same thing according to the 

acidity data. 

K Acidity data                                    Galaxy data 

   |   AICB BICB    |   AICB BICB 

K=2 -188.710      387.421      402.63

8      

-227.241      464.482      476.515 

K=3 -187.760      391.521      415.86

8      

-213.049      442.099      461.352 

K=4 -187.149      397.298      430.77

6      

-213.032      448.125      474.609 

K=5 -186.207      402.415      445.02

3      

-213.021      454.043      487.737 

K=6 -186.101      410.201      461.94

1      

-212.933      459.067      499.981 

K=7 -186.004      416.008      476.87

7      

-212.177      465.354      513.488 

 

 

 

 

 

Table 5: Results of the model selection for two real data application. 
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Figure 4: Fitting six test models for the galaxy data. 
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Figure 5: Fitting six test models for the acidity data. 

 

6.  Conclusion 

     This paper addressed the model selection issue for finite mixture model. We developed new 

modified information criteria for selecting the best finite mixture model,  as an idea inspired by 

Brooks (2002, p. 617). We derived Bayesian deviations plugging into two known standards: the 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) to select the fittest 

mixture model. We showed via simulation studies and examples include real data applications that 

the these new criteria perform well. We recommend to extend the study to include more 

complicated models, for instance underlying Markov models, in which dependency among the 

hidden states may have important role in performance of the proposed criteria.  In addition, we 

recommend in future to investigate other versions of our proposed criteria considering different 

forms of the likelihood, for instance, the complete and conditional likelihoods. 

Acknowledgments 

This work is a part from the scientific plan of the department of Banking and Financial science, 

College of administration and economics, Muthanna university, Iraq. 

 



 

811 
 

Kadhem   & Daham   . Muthanna Journal of Administrative and Economics Sciences .Vol.(10) – Issu.(2) . (2020). 137-153  
 

 

A. Computing the new modified AIC and BIC for a Normal mixture model 

Given an observed log-likelihood in closed form, an approximate version of the AICB and BICB 

can be calculated using M simulated values from an MCMC run. For a finite mix of regular 

distributions the deviation can be given by: 

      ̅̅ ̅̅ ̅̅ ̅̅ ̅           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   
 

 
∑ ∑   {∑    

 

   

  (  |  
   

    
    

) 

 

}

 

   

             

 

 

   

 

Where      represent the density function of k-component normal distribution, M is the number 

of iteration and         
   

   
    

 are the simulated parameters of the model. Therefor, the      

and      can be approximated, respectively, as follows: 

      
 

 
∑ ∑   {∑    

 

   

  (  |  
   

    
    

)
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